What’s under the hood
from blastai import Engine engine = await Engine.create( settings=settings, constraints=constraints )
task_id = scheduler.schedule_task( description="Search Python docs", cache_control="" )
blastai/ ├── __init__.py # Package initialization ├── engine.py # Main engine implementation ├── scheduler.py # Task scheduling ├── cache.py # Caching system ├── config.py # Configuration ├── planner.py # Task planning ├── executor.py # Task execution ├── tools.py # Tools for parallelism └── utils.py # Utilities
settings: persist_cache: true logs_dir: "blast-logs/" # Log to files (null for terminal-only) blastai_log_level: "info" # BLAST engine log level browser_use_log_level: "info" # Browser operations log level constraints: # Resource limits max_memory: "4GB" max_concurrent_browsers: 4 # Model configuration llm_model: "openai:gpt-4.1" # Main model for complex tasks llm_model_mini: "openai:gpt-4.1-mini" # Model for simpler tasks # Parallelism settings allow_parallelism: task: true data: true
# OpenAI configuration OPENAI_API_KEY=sk-... OPENAI_BASE_URL=https://your-endpoint.com # Optional # Google Gemini configuration GOOGLE_API_KEY=AIza... # From aistudio.google.com